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Abstract: We show that AdS black holes dual to field theories on flat spacetime, as

used in applications of the AdS/CFT correspondence to strong interaction and condensed

matter physics, have temperatures with positive lower bounds. There are two distinct

effects involved. For low chemical potentials in the dual field theory, the cooling black hole

makes a transition to a state corresponding to confinement in the field theory. For high

chemical potentials, it becomes unstable to a non-perturbative string effect. This allows a

holographic sketch of the field theory phase diagram, one which is in qualitative agreement

with the phenomenological understanding of the theory at [relatively] low temperatures. It

also puts an interesting upper bound on the temperature-normalized chemical potential µ̄

of the field theory, if it describes a plasma: in the normalization of Myers et al., µ̄ must be

less than approximately 0.49. Thus, the extent to which a chemical potential can worsen

violations of the KSS bound is severely restricted.
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1 Can a black hole be arbitrarily cold?

Extremal black holes are important but puzzling objects: they have zero temperature but

non-zero entropy. Many [see for example [1] and its references to the earlier literature] have

found this hard to accept even as a purely gravitational phenomenon, and it is no more

palatable when we pass from asymptotically flat to asymptotically AdS spacetimes: recall

that, in doing so, one finds that extremal black holes cease to be supersymmetric [[2], page

460], so that one no longer has any reason to expect them to be particularly stable. But

it is precisely in the AdS context that charged black holes are of most physical interest,

since these objects are needed when one applies the AdS/CFT correspondence to strong

interaction or condensed matter physics [3–9].

The problem, as Hartnoll has recently emphasised [see Footnote 14 of [7]], is that the

situation seems even stranger on the field theory side of the correspondence than on the

gravitational side. One could imagine that the peculiar physics of black holes might violate

the thermodynamic Third Law:1 in fact, not only is it apparently possible to reduce the

temperature of the black hole to zero by means of a finite sequence of operations, but also

the residual entropy can have any pre-assigned value. That is, its value is not universal as

the Third Law requires. But it is very difficult to believe that all this can happen in any

reasonable dual field theory. Turning this around, black holes with well-behaved dual field

theories should obey the Third Law. In the simplest interpretation, this simply means that

zero temperature should not be physically attainable by such black holes.

1For the [very questionable] current status of a black hole version of the Third Law, see [10].
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In the specific case of the holographic description of the strongly coupled Quark-Gluon

Plasma [QGP] [5, 11], it is very clear that zero temperature is not attainable in the phase of

the field theory that has a black hole dual: there is always a crossover/phase change to the

confined phase [with a gravitational dual which is not a black hole], or a phase transition

to some other phase [which may not have any gravitational dual at all], as the QGP is

cooled: see figure 1 of [12]. This strongly suggests that something prevents the dual black

hole from reaching extremality.

That there is indeed something peculiar about the extremal limit has been much dis-

cussed recently; there are subtle discontinuities [13, 14] and order-of-limit issues [15] when

the limit is taken. These observations may well help to explain why the entropy appears

to vanish in some computations. But, as Hartnoll stresses, they are not likely to lead to a

resolution of the problem we face here. For extremal black holes are not alone in causing

thermodynamic disquiet: a near-extremal black hole has an entropy which is bounded away

from zero, but it can have an arbitrarily small temperature as extremality is approached.

This is almost as disturbing, on the field theory side of the correspondence, as the situ-

ation in the extremal limit itself. Again, in the case of the strongly coupled QGP, the

plasma region of the quark matter phase diagram neither reaches nor comes close to the

zero-temperature axis.

String theory does contain extremal black holes [with non-zero entropy [16]]; but the

theory itself offers a way to resolve the problems arising from this. The “weak gravity

conjecture” proposed by Arkani-Hamed et al. [17] implies that extremal black holes exist

in string theory but are not stable. If this is so, then zero temperature is no longer physically

accessible, in practice, by means of a physical variation of the black hole parameters; and

so questions as to the properties of extremal black holes become academic. In other words,

string theory apparently provides a firm foundation for a genuine thermodynamic Third

Law for black holes.

In view of Hartnoll’s observation, we propose the following extension of this idea:

perhaps black holes, or at least the kinds of black holes that appear in applications to

strong interaction and condensed matter physics, become unstable in one way or another

at some point as extremality is neared, but before it is reached. If that is so, then neither zero

nor arbitrarily small temperatures are physically accessible, by means of finite variations of

parameters, for completely [in particular, non-perturbatively ] stable black holes. In short,

stability not only prevents extremality from being attained: it imposes a non-zero lower

bound on the temperatures of black holes with well-behaved dual field theories.

An interesting way of thinking about this proposal is as follows. Recall [see [2], page

454] that the temperature of an uncharged, spherical, five-dimensional AdS-Schwarzschild

black hole is bounded away from zero: the black hole decays to an energetically favoured

alternative state if one tries to approach zero temperature. This is interpreted holograph-

ically as a deconfinement-confinement transition in the field theory [which in this case is

defined on IR × S3]. However, the addition of charge to such a black hole has the effect of

rendering the field theory phase diagram two-dimensional, with the region corresponding

to confinement occupying one corner of the diagram [see [2], page 465]. It is now possible,

for sufficiently large electric potential at the event horizon [or chemical potential in the

– 2 –
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field theory], to access the zero-temperature axis while remaining in the deconfined [black

hole] phase. What we are suggesting is that black holes dual to physically interesting

field theories [defined on flat spacetimes] always become unstable when the temperature

is sufficiently low. The dual statement is that there is a strip [of non-zero width, which

we should be able to compute, or at least adjust to reasonable values], adjacent to the

zero-temperature axis in the field theory phase diagram, in which a crossover or phase

transition always occurs. This is in fact a good description of the quark matter phase dia-

gram, as it is understood phenomenologically [12]. Indeed, what we are proposing is that

it should be possible to construct a quasi-realistic holographic model of the field-theoretic

phase diagram.

In order to make this proposal work, we need to do two things: we must identify suitable

effects which destabilize black holes that are “near” to extremality, and we need to define

“nearness” in a precise way. In this work, we show that we can do these things for the class

of charged AdS black holes which are most important in applications: those which are dual

to a field theory defined on flat spacetime. There are two separate effects acting here. The

first is perturbative and relevant at relatively small values of the chemical potential: it is the

flat-boundary analogue [18–21] of the familiar deconfinement/confinement transition [22]

for AdS black holes. The second is non-perturbative and dominates at large values of

the chemical potential: it is a purely stringy effect, discovered by Seiberg and Witten [23]

[see [24] for a clear survey], arising from the possibility of negative free energies for creation

of branes. This second effect imposes particularly specific constraints: when it is taken into

account, such black holes are stable for almost all values of the charge, but they become

unstable when the charge reaches about 96% of the extremal value. The temperature

has a corresponding lower bound, expressible in terms of the black hole mass and certain

geometric data at infinity [or in terms of the mass and the minimal possible entropy].

Apart from resolving our problem, considerations like this may put interesting and

welcome constraints on the [temperature-normalized] chemical potential of the field theory

describing a plasma, µ̄. Recently it has become clear that the celebrated KSS bound [25]

can be violated if one goes beyond the two-derivative action in the bulk, and that the

introduction of a non-zero µ̄ makes the violation worse [26, 27]. Without Seiberg-Witten

instability, µ̄ can take arbitrarily large values; with it, we find [using the normalization

of Myers et al. [26], and restricting throughout to the two-derivative action] that it is

bounded above by about 0.49. While this is only a rough estimate,2 we can conclude that

non-perturbative string effects place very restrictive conditions on µ̄, so that the extent to

which the KSS bound can be violated in this way is very effectively contained. This may

ultimately point the way to a “corrected” KSS bound, as we discuss in section 7.

2 Physics of “flat” black holes

In spacetimes satisfying the dominant energy condition — which, for fluid matter, requires

that the energy density equal or exceed the absolute value of the pressure — there are

2While we do not claim that our very elementary discussion is directly related to observations, we

note that the value of µ̄ deduced from observations of the unusual states produced at the RHIC [see for

example [28]] is roughly one-third of our upper bound.

– 3 –



J
H
E
P
0
9
(
2
0
0
9
)
0
4
8

strong restrictions [29, 30] on the topology of the event horizon of a black hole. Asymptot-

ically locally anti-de Sitter spacetimes3 do not satisfy the dominant energy condition, and

this fact does indeed relax these restrictions: now there are genuinely new possibilities for

the geometry and topology of the event horizon [31–35]. In the case where no matter other

than the vacuum energy is present, all of the following Anti-de Sitter-Schwarzschild metrics

are exact solutions of the Einstein equations4 [with a negative cosmological constant]:

g(AdSSchk) = −
[

r2

L2
+ k − 16πM

3Γkr2

]

dt2 +
dr2

r2

L2 + k − 16πM
3Γkr2

+ r2dΩ2
k. (2.1)

Here L is the radius of curvature of the asymptotic AdS5, dΩ2
k is a metric of constant

curvature k = {−1, 0,+1} on a compact three-dimensional space Ck, and Γk is the area

of this space. This crucial quantity enters here because of the normalization of the ADM

Hamiltonian at infinity: if this Hamiltonian is to vanish at zero mass [and charge] then [34]

one needs this factor at each appearance of the mass and charge.5

The cases with k 6= +1 are sometimes called “local” versions of the k = 1 spacetime,

presumably by analogy with the forms taken by the de Sitter metric on submanifolds

of de Sitter spacetime which can be foliated by flat or hyperbolic spatial sections [see

for example [36]], or perhaps because Witten [37] first obtained the k = 0 metric [in this

context] by taking the large-mass limit of the k = 1 spacetime. This terminology is however

extremely misleading: the k 6= +1 metrics are exact solutions at any value of the mass,

large or small; and their global structure is completely different from that of any black

hole with a locally spherical event horizon. In particular, the conformal boundary has the

topological and conformal structure of IR× Ck, which differs radically from one value of k

to another.

In applications of the AdS/CFT correspondence to strong interaction and condensed

matter physics, one is almost exclusively interested in defining the field theory on a space-

time which is locally indistinguishable from Minkowski spacetime. It follows that the black

holes which appear in these applications are those with metrics given by equation (2.1)

with k = 0. In view of the comments we have just made, we must not assume that these

black holes behave in precisely the same way as their more familiar counterparts with lo-

cally spherical event horizons: they are not “local versions” of the latter. Let us therefore

be more precise about the nature of the k = 0 case.

The space C0 is not uniquely defined [38], but, for the sake of simplicity, let us assume

that C0 is an exactly flat torus T3, parametrised by three angles. We shall assume that this

torus is cubic: that is, all three angles have periodicity 2πK, where K is a dimensionless

parameter. Then the quantity Γ0 in equation (2.1) is given by

Γ0 = 8π3 K3, (2.2)

3For the sake of clarity we shall focus here exclusively on the physically most interesting case, that is,

five-dimensional asymptotically locally anti-de Sitter spacetimes dual to four-dimensional field theories.
4We stress that, throughout this work, we use the standard Einstein-Hilbert two-derivative action. The

consequences of using a four-derivative action are discussed in section 7.
5Throughout this work, M denotes the ADM mass, and Q the ADM charge; for simplicity we shall take

it that Q is positive.
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and the area of any surface defined by r = constant is equal to this quantity multiplied by r3.

Thus the metric in which we are interested is

g(AdSSch0) = −
[

r2

L2
− 2M

3π2K3r2

]

dt2 +
dr2

r2

L2 − 2M
3π2K3r2

+ r2dΩ2
0. (2.3)

This metric has a Euclidean version, in which the complexified version of t parametrises

a [fourth] circle; thus the Euclidean metric, g(EAdSSch0), is a metric on a manifold which

is radially foliated by copies of the four-torus T4. One can think of t/L as an angular

coordinate on the fourth circle; the periodicity 2πP of this angular coordinate must be

chosen so that the Euclidean metric is not singular at reh, the value of r at the event

horizon. The conformal boundary now has the structure of a [conformal] torus, which

however need not be cubic, since in general P will not be equal to K. The field theory is

defined on this space, which is just [the Euclidean version of] ordinary flat spacetime [37]

with formal periodic boundary conditions . [The Lorentzian topology at infinity is of

course IR × T3; the structure of infinity is necessarily related to that of the event horizon

by topological censorship [39].]

A non-zero chemical potential, µ, is needed if the field theory is to have a continuously

variable temperature; as is well known [see for example [7, 40]] this corresponds to putting

a charge on the black hole on the gravitational side of the AdS/CFT correspondence. Let

us therefore discuss the charged version of the above “flat” black hole, and then show how

to express the chemical potential in terms of black hole parameters.

If the ADM charge is Q, then the AdS-Reissner-Nordström metric with flat event

horizon is

g(AdSRN0) = −
[

r2

L2
− 2M

3π2K3r2
+

Q2

48π5K6r4

]

dt2

+
dr2

r2

L2 − 2M
3π2K3r2 + Q2

48π5K6r4

+ r2dΩ2
0; (2.4)

the power of K in the new terms is required by the fact that Q appears as a square.

The value of r at the event horizon, assuming that one exists, is obtained by solving

the equation
r6eh
L2

− 2Mr2eh
3π2K3

+
Q2

48π5K6
= 0. (2.5)

The value of reh is mainly of interest because of its relation to the black hole entropy. As

was recently demonstrated in detail in [41], the standard relation between the entropy of a

black hole and its horizon area continues to hold for these black holes: that is, the entropy

is one quarter of the horizon area, so that

S = 2π3K3r3eh. (2.6)

A straightforward calculation now allows us to eliminate reh between (2.5) and (2.6). This

allows us to fix the entropy in terms of the values of the ADM and geometric parameters:

the entropy satisfies

πQ2L2 = 21/3 × 16π2ML2KS2/3 − 12S2. (2.7)

– 5 –
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Figure 1. Squared Charge as a Function of Entropy [Typical Parameter Values]

“Approaching extremality” is most simply implemented as a process whereby one fixes all

other ADM and geometric parameters and imagines increasing the charge. From (2.7), we

see that Q2 can be regarded as a function of S, and vice versa. Notice that this apparently

maps, in general, two values of S to a given value of Q2, but this is due to the fact that (2.5)

yields two values for reh when the other parameters are fixed: in the non-extremal case

there are two Reissner-Nordström horizons, as usual. The smaller value corresponds to a

Cauchy horizon; only the larger value defines an event horizon. Therefore, in computing

the entropy we should only take the larger of the two candidates for reh, and from (2.6) we

see that this implies that we accept only the larger value of S. That is, only the right-hand

[decreasing] branch of the graph of Q against S is physical. Figure 1 portrays Q2 as a

function of S in the physical domain. The key point here is that the charge reaches its

maximum allowed value before the entropy is able to reach zero. That is, the vertical axis

in figure 1 does not correspond to S = 0. There is a lower bound on the possible values of

the entropy: the entropy cannot be smaller than its value when the black hole is extremal:

S ≥ SE =

[

4 × 21/3

9
× π2ML2K

]3/4

≈ 0.647322 ×
[

π2ML2K
]3/4

. (2.8)

There is also an upper bound on the entropy, given by its value for an uncharged “flat”

black hole: the addition of charge always reduces the entropy [all other parameters being

fixed]. The lower bound on the entropy implies that there is an upper bound on the charge,

the charge of the extremal black hole:

Q2 ≤ Q2
E =

64

9

√
2π2M3/2LK3/2. (2.9)

Because it is easier to express Q2 in terms of S rather than the reverse, we shall often find

it convenient to use S as our independent parameter, but the reader can always think in

terms of varying Q, simply by bearing figure 1 in mind.
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Figure 2. Black Hole Temperature as a Function of Entropy [Typical Parameter Values]

The bounds on the charge and entropy are saturated when the two possible values

of reh [for given values of M, Q, L, and K] actually coincide: that is, they are saturated

only by an extremal black hole. Beyond that point, reh is not well-defined. Thus, the fact

that Q2 is bounded above, and that S is bounded below, is a reflection of the assumed

existence of an event horizon. Classically, one would describe this situation in terms of

“cosmic censorship”. [See [42–44], but also [45].]

The temperature of the black hole is computed by evaluating 2πP, the periodicity of

the complexified time coordinate, and the result may be written [with the aid of equa-

tions (2.5), (2.6)] as

T =
1

21/3π

[

S1/3

πKL2
− Q2

24KS5/3

]

. (2.10)

Now Q can be eliminated using equation (2.7), and after a lengthy simplification we obtain

T =
3S1/3

21/3 × 2π2KL2
− 2M

3S
. (2.11)

This function is portrayed in figure 2. The temperature always increases with the entropy.

For large S [small Q] the temperature varies with the cube root of the entropy, just as it

does for uncharged spherical five-dimensional AdS black holes [see [2], page 454]; the system

does not “care” about the spatial geometry when the entropy is large, as is intuitively

reasonable since a large sphere resembles a large torus locally.6 But for small S [large

Q] the temperature vanishes before the entropy does so, reaching zero when the entropy

is given by its extremal value SE [equation (2.8)]. This is our problem: figure 2 looks

reasonable from the field theory point of view when S is large, but not when it is small.

We are now in a position to compute the chemical potential. The bulk electromagnetic

potential one-form, expressed in terms of a gauge such that the connection is not singular

6In both cases, “large” entropy is associated with large mass: recall that the entropy of the uncharged

case, fixed by the mass, sets an upper bound to the entropy for charged “flat” black holes.
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[see [2], page 416], is

A =
Q

16π3K3

[

1

r2
− 1

r2eh

]

dt. (2.12)

The chemical potential µ on the field theory side of the AdS/CFT correspondence [see [7]] is

proportional to the background electric potential corresponding to a global U(1) symmetry.

The [negative] constant of proportionality must have units of inverse length if the chemical

potential is to have the correct units; here we adopt the procedure followed in [26]. The

chemical potential is therefore given by the product of this constant with the magnitude

of the asymptotic value of the coefficient of dt in equation (2.12):

µ =
Q

16π4K3Lr2eh
=

22/3Q

16π2KLS2/3
. (2.13)

If we think of S as a solution of equation (2.7), then we see that the chemical potential is

determined not just by the charge but also by the bulk black hole’s mass and its spatial

periodicity parameter K. It follows that any restrictions on these quantities impose restric-

tions on the chemical potential. For example, if we fix M and K and allow Q [and therefore

S] to vary, the assumed existence of a well-defined entropy on the AdS side of the duality

imposes restrictions on Q and S [inequalities (2.8) and (2.9)]. Since S is a decreasing func-

tion of Q under these circumstances [figure 1], we see that µ always increases with Q: it is

zero when Q vanishes, and it is bounded above by its value at extremality:

µ ≤ µE =
1

25/4π2

[

M

K3L6

]1/4

≈ 0.042600 ×
[

M

K3L6

]1/4

. (2.14)

Any further constraints on Q will of course amend this upper bound.

Following [26] once more, we define the chemical potential normalized by

the temperature,

µ̄ = µ/T. (2.15)

Because µ is an increasing, and T a decreasing function of Q, we see that µ̄ is an increasing

function of Q [assumed positive for convenience]; unlike µ, however, it is not classically

bounded above. This is another way of stating our basic concern, the possibility of having

black holes with zero temperature; a solution of this problem will entail an upper bound

on µ̄. We record this crucial point as follows: the range of µ̄ is given classically by

0 ≤ µ̄ < ∞. (2.16)

We shall see later that string theory drastically modifies this statement.

3 No zero temperatures at low µ: transition to confinement

Let us focus now on a particular application, the use of these black holes to describe the

quark-gluon plasma [5]. In phenomenological studies [12], the phase diagram is a graph of

the temperature T against the chemical potential µ. Holographically, these two parameters

– 8 –
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are, as we have seen, just complicated functions of the black hole ADM parameters M and

Q; see equations (2.10) and (2.13). Phase changes and crossovers in the (µ, T) plane are

a result of changes in the behaviour of the the black hole when M and Q are allowed to

vary. These changes are due in part to the thermodynamics of the black hole, to which

we now turn.

The thermodynamic behaviour of these so-called “flat” black holes is not simple. One

should not use the zero-mass limit as the background for regularizing the energy, but rather

the Horowitz-Myers “AdS soliton” [18]; for it was conjectured, and subsequently proved,

that this is the configuration of least energy with these boundary conditions [19–21]. The

various phase transitions depend not just on the ADM parameters of the black hole but

also on the fixed geometric parameters K and L. To explain this, we write out the dΩ2
0 term

in equation (2.4) in full, taking the coordinates on the three-torus to be φ, θ1, θ2 [that is,

we arbitrarily single out one of the toral directions], so that the black hole metric is

g(AdSRN0) = −
[

r2

L2
− 2M

3π2K3r2
+

Q2

48π5K6r4

]

dt2

+
dr2

r2

L2 − 2M
3π2K3r2

+ Q2

48π5K6r4

+ r2
[

dφ2 + dθ2
1 + dθ2

2

]

. (3.1)

The AdS-Reissner-Nordström soliton metric is then obtained by means of a straight-

forward double analytic continuation of the black hole metric: complexifying t and φ and

exchanging labels in a natural way we obtain7

g(AdSRNSol) = − r2

L2
dt2 +

dr2

r2

L2 − A
r2

+ B
r4

+

[

r2

L2
− A

r2
+

B

r4

]

L2 dφ2 + r2
[

dθ2
1 + dθ2

2

]

. (3.2)

As was emphasised in [19], there is no need to insist that the parameters here should

coincide with those of the black hole. However, the angular coordinates are well-defined at

conformal infinity, so their periodicities must agree with those of the hole in order that the

two geometries should match there. As in the black hole case, the need to avoid a conical

singularity imposes a relationship between periodicities and parameters. In the black hole

case, this fixes the temperature in terms of the black hole parameters; here we have to

apply this idea to φ, which has periodicity 2πK. This gives us one relation between A, B,

and K. [For our purposes it is best to think of B as being fixed at some small value; then

A is determined by K. This allows the soliton to avoid the form of instability discussed in

the next section.] Finally, the Euclidean “time” coordinate of the soliton has to have a

periodicity which matches that of the Euclidean black hole “time” coordinate, namely, 2πP.

As usual, the Euclidean action of these black holes is divergent and has to be regularized

by means of a comparison with a reference spacetime, which in this case we take to be a

7The basic references [18–21] deal only with the uncharged case; we are supposing that the basic ideas

still hold here.
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Horowitz-Myers soliton. One can show, following [19], that the regularized black hole

action is given in this [five-dimensional] case by

I = α PK3
[

K− 4 − P− 4
]

; (3.3)

here α is a positive number [which depends on L], whose precise value does not concern us.

If we had insisted that the soliton parameters coincide with those of the black hole, then K

and P would have been given by identical formulae, and so this action would have vanished

and there would have been no possibility of any phase transitions. But if we allow other

values for A and B in equation (3.2), then it becomes possible for K to differ from P, and

phase transitions can and do occur. [The action depends on A and B, but only through

K; alternatively, one can, as above, think of K as the basic variable, fixing B appropriately

and regarding A as a function of K.] The phase transitions are controlled by the relative

sizes of K and P: in other words, they are determined by the precise shape of the four-torus

at [Euclidean] conformal infinity, by the extent to which it deviates from being cubic.

Writing P as 1/(2πTL), where T is the temperature of the black hole, we have

I = αPK3
[

K− 4 − (2πTL)4
]

. (3.4)

Assuming that the free energy of the soliton is zero, we see now that the black hole is

energetically favoured only if its temperature is not too low compared with 1/(2πKL).

This means that if K is very large, then a very cold black hole can be stable; conversely, if

K is very small, then even a very hot black hole can be unstable, as was pointed out in [19].

The dual interpretation is that the phase of the field theory is determined by the size of

the temperature relative not to 1/L but rather to 1/KL, where K is a purely geometric

parameter which cannot be varied by means of any local physical process.

While a very cold “flat” black hole can be stable in some special cases, the fact remains

that zero temperature is impossible for these black holes. Once K is fixed, every “flat”

black hole with a temperature below 1/(2πKL) will be unstable: it will be replaced by

the appropriate soliton, which then has lower free energy. So the temperature of the

hole satisfies

T ≥ 1

2πKL
. (3.5)

This is of course exactly what we requested in section 1: the hole becomes unstable as it

is cooled, and this happens even before extremality is reached. The dual statement is that

the plasma phase of the field theory cannot be arbitrarily cold.

Generally speaking, “flat” black holes are easier to interpret, from a holographic point

of view, than their spherical counterparts. For example: all “flat” black holes have positive

specific heat under all circumstances, as discussed in [19] in the uncharged case — the

black hole is eternal8 [46]. The positivity of the specific heat is very reasonable from the

dual point of view, since one certainly expects the specific heat of the field theory to be

positive [37].

8Of course it will only be literally eternal if it can reach equilibrium with its own Hawking radiation

before its temperature falls too low.
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The case at hand provides another example. A spherical AdS-Reissner-Nordström

black hole has a critical value of the charge [[2], page 461] above which zero temperature

is possible. In the phase diagram [[2], page 465] this means that, in the spherical case, the

confined field theory corresponds to one small corner of the diagram. In the “flat” case,

by sharp contrast, it is represented by an infinite strip, of width 1/(2πKL), adjacent to the

T = 0 axis.

That is a very considerable improvement over the spherical case, since the “schematic”

quark matter phase diagram given in [12] does exhibit such a strip, forbidding zero tem-

perature to the plasma phase; but it is still unacceptable. For it predicts that the plasma

phase of the field theory makes a phase transition to a confined state [corresponding to the

soliton], as the temperature is lowered, at all values of the chemical potential, no matter

how large. A glance at the quark matter phase diagram, even if we accept that it is only

qualitatively valid, shows that this is incorrect. At high values of the chemical potential,

there is a phase transition, but not to a confined state; these new states, such as the

“colour-flavour locked” state, apparently have no gravitational dual description. A con-

vincing holographic account of the phase diagram therefore cannot rely exclusively on the

effect we have been discussing in this section. We need another effect, one that dominates

at high chemical potential. We now turn to this.

4 No zero temperatures at high µ: stringy instabilities

It has been understood from the beginning [22] that the AdS/CFT correspondence should

be valid for more general asymptotically locally AdS spacetimes, not just for AdS itself. In

physical language this means the following. Suppose that we introduce matter into AdS,

and allow it to deform the spacetime geometry in accordance with either classical gravity

or some stringy modification of it. If the deformation is sufficiently mild, the spacetime

will continue to have a conformal compactification with a Lorentzian conformal structure

at infinity. Even though the geometry of conformal infinity may change quite substantially,

it is reasonable in this case to assume that there continues to be a duality between a field

theory at infinity and the gravitational theory in the bulk.

However, this does not mean that every deformation of AdS with a Lorentzian con-

formal boundary is physically acceptable. Extending earlier work in more restrictive cir-

cumstances [47], Seiberg and Witten [23], and Witten and Yau [48], showed that if the

boundary is deformed to such an extent that the scalar curvature of its Euclidean version

becomes negative, then the entire system becomes unstable. [The scalar curvature at in-

finity is positive for AdS itself.] They did this by computing the action of a “large” BPS

brane. This turns out to become, and remain, negative at some finite distance if the scalar

curvature at infinity is negative, giving rise to an infinite reservoir of negative free energy.

This means that there is a pair-production instability for branes. Note here that extended

objects like branes are capable of detecting at least some aspects of the global structure of

spacetime, so one must take care to use the correct global form of the spacetime, and not

to be misled by special, local choices of coordinates [such as those which suggest that the

scalar curvature of the Euclidean AdS conformal boundary is zero].
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It is important to understand that the analysis of Witten and Yau is extremely gen-

eral: though they focus on the case in which the bulk is an Einstein manifold, they note

that their methods, including their computation of the brane action, remain valid for any

asymptotically AdS spacetime. For example, Maldacena and Maoz [49] studied Seiberg-

Witten instability in the presence of a gauge field, using the Witten-Yau expression for

the BPS brane action; here the bulk is asymptotically locally AdS but not an Einstein

manifold.9 This is of course precisely the case of interest to us here, and we shall proceed

in the same way.

This “Seiberg-Witten instability” certainly arises at large values of a radial coordinate

if the scalar curvature at infinity is negative, but not if the scalar curvature at infinity

is positive. Thus for example AdS black strings dual to a gauge theory on S2× S1 ×
IR [52] are stable. There remains however a third possibility: if the scalar curvature at

infinity is strictly zero, then the brane action might become negative at large distances,

depending on higher-order terms in the expansion considered by Seiberg and Witten. Of

course, asymptotically locally AdS black holes with flat event horizons have zero scalar

curvature at infinity, so they lie precisely in this extremely delicate “borderline” region.

We should expect that some of these black holes are stable, while others are pushed over

the borderline when some parameter is continuously adjusted. As we shall see, that is

precisely what happens.

It was shown in [53] that uncharged AdS black holes with flat event horizons are in

fact stable in the Seiberg-Witten sense. We wish to extend that discussion to the charged

case. To investigate this, we switch to the Euclidean picture, and assume as usual that

the temporal period 2πP has been chosen so that the Euclidean version of the charged

black hole spacetime with metric (2.4) is non-singular. We can consider a BPS 3-brane

of tension Θ wrapping one of the r = constant sections of that space; the action is then,

following [23, 24, 48],

$(r;Θ,L,M,Q,K) = 16π4ΘPLK3

{

r3

[

r2

L2
− 2M

3π2K3r2
+

Q2

48π5K6r4

]1/2

− r4 − r4eh
L

}

.

(4.1)

Here the notation means that the action is a function of r with parameters Θ, L, M, Q,

and K; note that reh and P are fixed by these parameters. [reh is found by solving (2.5); P

is proportional to the reciprocal of the temperature, given by equation (2.11); it depends

on S, which however is fixed by L,M,Q, and K.]

9Witten and Yau, and also Maldacena and Maoz, were concerned with the issue as to whether the

boundary could be topologically disconnected in the AdS/CFT correspondence; this question was clarified

subsequently by Cai and Galloway [50]; see also [51]. This particular issue does not arise here.
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This expression simplifies to

$(r;Θ,L,M,Q,K) = 16π4ΘPL2K3



























Q2

48π5K6r2
− 2M

3π2K3

1 +

[

1 − 2ML2

3π2K3r4
+ Q2L2

48π5K6r6

]1/2
+

r4eh
L2



























.

(4.2)

This function vanishes at r = reh, both the area and the volume of the brane being zero

there; it then becomes positive, but is asymptotic at large r to the value

$(∞; Θ,L,M,Q,K) = 16π4ΘPL2K3

{

− M

3π2K3
+

r4eh
L2

}

. (4.3)

We remind the reader that this asymptotic action is computed using the Einstein-

Hilbert gravitational action [which leads to the metric (2.4)]. In other words, following

Witten, Yau [48], Maldacena, and Maoz [49], we ignore all couplings of the probe brane and

all stringy corrections to the gravitational action. Our results are therefore approximate.

Since we are trying to exclude an entire range of values for Q, and not just a single [extremal]

value, we believe that this will not affect our main conclusions: it will only give rise to a

correction to the width of the range of excluded charges. In short, the qualitative picture

should be valid.10 For the consequences of going beyond the Einstein-Hilbert action, see

section 7 below.

It is easy to show that the asymptotic action in (4.3) is positive if Q = 0, and this is

why the uncharged black hole is stable. The addition of electric charge has, however, the

effect of reducing reh: the values of r at the two horizons approach each other as extremality

is neared. Thus there is a danger that the negative term in the braces could outweigh the

positive term in the charged case. This is precisely what happens, and it happens before

extremality is reached. We are now ready to be precise about this.

5 The bounds on temperature and normalized chemical potential

We can assess the relevant values of the asymptotic brane action in an elementary and

explicit way as follows. Let x = r2, and xeh = r2eh. Then [see equation (2.5)] xeh is [when

the two horizon radii are distinct] the larger of the two positive roots of the cubic

G(x) = x3 − 2ML2x

3π2K3
+

Q2L2

48π5K6
. (5.1)

This cubic has its minimum at

xmin =

[

2ML2

9π2K3

]1/2

. (5.2)

10To establish this more firmly, one should re-compute the brane action in the context where the gauge

field is explicitly obtained from a Kaluza-Klein reduction of one of the dimensions we have ignored here,

and with a coupling of the brane to the RR flux. We intend to return to this issue elsewhere.
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The condition for an event horizon to exist is that G(xmin) should not be positive. A

straightforward calculation shows that this demands that the following dimensionless com-

bination of the parameters should satisfy

Q2

L(KM)3/2
≤ 64

√
2π2

9
≈ 99.2550; (5.3)

this is of course another form of (2.9), and the inequality is again saturated only at ex-

tremality. We continue to denote the extremal value of Q2 by Q2
E.

As usual, we shall vary Q while keeping M, L, and K fixed.11 Note that, as we do this,

xmin remains fixed. Increasing Q simply has the effect of lifting the cubic higher, without

changing the location of its minimum point. This draws the two positive roots together: in

other words, reh becomes steadily smaller as Q increases [and hence so does S, in agreement

with our earlier discussions]. The two positive roots of the cubic G(x) will coalesce at xmin

in the extremal limit, which means that xmin is the square of reh in the extremal case; so

we can try to evaluate the brane action at infinity for the extremal black hole simply by

letting reh tend to the square root of xmin in equation (4.3). The result is divergent, because

the periodicity P diverges in the extremal limit; but the ratio $(∞; Θ,L,M,Q,K)/P has a

finite limit as extremality is approached, given by

lim
Q→QE

$(∞; Θ,L,M,Q,K)/P = − 16

9
π2ΘL2M. (5.4)

This is of course negative;12 we can interpret this as meaning that when the temperature

is extremely low, so that P is very large, the brane action at infinity is an arbitrarily large

negative number. In other words, near-extremal black holes dual to strongly coupled field

theories on flat spacetime are unstable in the Seiberg-Witten sense.

We can be more precise about “nearness”, as follows. Define a critical [“near-extremal”]

value of Q2 by
Q2

NE

L(KM)3/2
=

16π2

√
3

≈ 91.1715; (5.5)

note the crucial fact that Q2
NE is smaller than Q2

E, so that (5.3) is satisfied: in fact,

Q2
NE/Q2

E ≈ 0.918559, (5.6)

so we are below extremality in this case, though not far below it: the charge is at about

96% of its extremal value. We now claim that, for this near-extremal combination of

parameters, xeh is given by

xeh(NE) =

[

ML2

3π2K3

]1/2

. (5.7)

To see this, one simply has to verify directly, using the definition of Q2
NE, that G(x) vanishes

at this value, and to check that xeh(NE) > xmin [so that we are indeed dealing with the

11We assume for simplicity that, as this happens, the system remains in the plasma phase [that is, that

the black hole does not dissolve into a soliton]. See section 6.
12Notice that the result depends on M but not on K; the result is independent of the periodicities of the

coordinates.
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Figure 3. Brane Action, Typical Parameters, With Q at 98.8% of Extremality

larger of the two positive roots of the cubic]. This is elementary. But now if we substitute

the corresponding value of reh into equation (4.3), then we find that the asymptotic brane

action vanishes. This is the sense in which Q2
NE is a critical value for the squared charge:

the system is in this case on the brink of becoming unstable. This means that if [again,

fixing M, L, and K] we increase Q beyond this critical value, then [see equations (5.1)

and (5.2)] the graph of the cubic rises up, reducing reh still further. But then (4.3) implies

that the brane action at infinity becomes negative: in short, the system is unstable for any

value of Q2 strictly greater than Q2
NE. This gives a precise definition of “near-extremal”.

Figure 3 shows the brane action for a typical choice of parameters, such that Q

is approximately 98.8% of its extremal value; that is, we are well inside the “near-

extremal” regime, but not at extremality. The fact that the action eventually becomes

negative is clear.

To summarize: for most values of the charge, these black holes are stable in the Seiberg-

Witten sense. But if the charge is increased beyond approximately 96% of the extremal

value, then they cease to be stable. For simplicity, we have stressed the role of the charge;

but similar conclusions hold [see equation (5.5)] if either the mass or the spatial periodicity

is too small.

Since Q and S are related when the other parameters are fixed [figure 1], it follows

that a more restrictive upper bound on Q will impose a lower bound on S which is more

restrictive than the one given by the inequality in (2.8), above. Let SNE be the value of

the entropy which corresponds to the “near-extremal” value of the charge; then we have,

from equation (5.7),

SNE = 2π3K3[xeh(NE)]3/2 =
2

33/4
×

[

π2ML2K
]3/4

. (5.8)
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Thus we have

S ≥ SNE ≈ 0.877383 ×
[

π2ML2K
]3/4

. (5.9)

This is indeed significantly more restrictive than the inequality in (2.8).

The temperature corresponding to the “near-extremal” charge and entropy is, by equa-

tion (2.11),

TNE =
1

2 × 31/4 × π3/2

[

M

K3L6

]1/4

. (5.10)

From figure 2 we see at once that this sets a lower bound to the temperature of the black

hole: we must have

T ≥ TNE ≈ 0.068228 ×
[

M

K3L6

]1/4

. (5.11)

This is the result we seek. If one steadily increases the charge of the black hole, its entropy

never reaches zero, but nor does its temperature: the process effectively destabilizes the

black hole before zero temperature can be reached. The situation can be encapsulated in

the following remarkably simple formula: the minimal possible values of the entropy and

the temperature [which we re-label accordingly], given in equations (5.8) and (5.10), satisfy

SminTmin =
1

3
M. (5.12)

The absence of the geometric parameters K and L from the right hand side is striking; black

holes of mass M in asymptotically locally AdS spacetimes, with flat conformal infinities,

of whatever spatial periodicity, all have the same relationship between minimal entropy

and minimal temperature as their charge varies. A computation of the minimal black

hole entropy from an analysis of the microscopic degrees of freedom would therefore allow

an actual evaluation of the minimal temperature, without requiring any knowledge of the

geometric parameters.

As we discussed earlier, a lower bound on the temperature implies the existence of

upper bounds on the chemical potential µ and on its temperature-normalized version, µ̄.

Combining equations (2.13), (5.5) and (5.8), we obtain

µNE =
31/4

4π2

[

M

K3L6

]1/4

, (5.13)

so we have

µ ≤ µNE ≈ 0.033337 ×
[

M

K3L6

]1/4

, (5.14)

which can be compared with the inequality in (2.14).

The case of µ̄ is much more striking: we find that the upper bound, which we re-label

appropriately, is simply

µ̄max = µNE/TNE =

√

3

4π
, (5.15)
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so that

µ̄ ≤ µ̄max ≈ 0.488603, (5.16)

contrasting sharply with the situation summarized in (2.16). As in (5.12), the absence of

K and L is remarkable.

As is customary, we must remind the reader that the field theory in question here is

not QCD; one hopes that some kind of universality might render these results relevant

to the experimental situation revealed by the celebrated RHIC experiment. In view of

the extreme simplicity of our methods and the many assumptions made, even order-of-

magnitude agreement is not to be looked for. With these disclaimers, we nevertheless give

the following very brief and over-simplified discussion of the experimental situation.

As is well known, the RHIC experiment is believed to have produced a high-energy-

density medium with fluid-like properties; the hope is that this medium has a dual descrip-

tion which is in some way similar to the ones we have been describing. One distinctive

feature of this medium is that it is associated with a very high antiparticle/particle ratio,

as compared with observations made in earlier experiments of a similar kind [but which

did not produce such a medium]; see figure 4 of [28]. A simple theoretical analysis shows

that this ratio should be given by exp(−2µ̄B), where µ̄B is the temperature-normalized

baryonic chemical potential. For RHIC collisions with a centre-of-mass energy of 200 GeV,

the ratio is about 0.73, so that µ̄B is roughly 0.16. This of course agrees with (5.16). If we

ignore the above disclaimers, then the prediction of (5.16) is that the antiproton/proton

ratio cannot fall below about 0.38 in the fluid-like medium produced at the RHIC. Perhaps

the best description of the situation is as follows: the systems observed at the RHIC have

a relatively high antiproton/proton ratio; we claim that holography predicts, in agreement

with this, that there is in fact a lower bound on this ratio, if these systems are indeed dual

to a [stable] black hole. This lower bound may not be very far below the observed value.

6 Application: the field theory phase plane

Let compare the situation we have found in section 5 with the more familiar variety of

black hole instability discussed in section 3, above. There are two crucial differences.

First, the instability in section 3 involved a transition of the black hole to another object

with a well-defined geometry and correspondingly well-behaved dual physics, involving a

confined phase of the field theory. The instability we have been discussing in sections 4

and 5, by contrast, involves a transition to a state which is not well-defined, involving

infinite reservoirs of negative free energy for branes. Thus, we do not have a transition to

a confined state, but rather one to some kind of state which may perhaps have no dual

geometric description at all; at any rate, if it does have a geometric dual, that dual is very

different from the AdS soliton. It is natural, in the specific case of the quark matter phase

diagram, to associate this with the phase transitions from the QGP state to the “CFL”

and “non-CFL” phases in figure 1 of [12]. Let us call these the “exotic” phases.

Second, the instability in section 3 gave rise to a lower bound on the temperature,

but this lower bound depended only on K. Here, the temperature bound depends also on
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M, the mass of the black hole. A helpful way to think about this distinction is in terms

of trajectories in the phase diagram, that is, the (µ, T) plane. Suppose that we begin at

some point in the region corresponding to the plasma phase: this corresponds to a specific

choice of M and Q. Now gradually increase Q. The point in the phase diagram will move

in the direction of decreasing T and increasing µ, tracing out a curve which terminates on

the phase boundary. Let us assume that this boundary represents the transition from the

plasma to an exotic phase. Then we know that this point must satisfy µ̄ =
√

3/4π = µ/T;

in other words, the boundary follows the straight line

T =

√

4π

3
µ. (6.1)

We saw in section 3 that there is no black hole if the temperature falls below 1/(2πKL),

so there is no occasion for brane-induced instability at low chemical potentials, since the

straight line in (6.1) lies below 1/(2πKL) when µ is small. [Recall that the two soliton

parameters A and B are constrained by only one relation, so we can readily arrange for

the soliton to be immune to Seiberg-Witten instability: we just have to choose B to be

small, and let A be fixed by K.] Thus the effect studied in section 3 dominates at low

values of µ. It is only when the line in (6.1) intersects and rises above the horizontal line T

= 1/(2πKL) that Seiberg-Witten instability comes to dominate, because then the cooling

black hole becomes unstable in that way before it has an opportunity to make a transition

to the soliton. That is, the instability discussed in section 5 is the relevant one at high

chemical potentials. In short, we have a transition, as the temperature decreases, to a

confined phase at small µ, but to some other, exotic phase when µ is large.

Thus we obtain a holographic version of the field theory phase diagram. As usual, we

make no claim that this should be quantitatively accurate, but some qualitative features

of the phenomenological phase diagram, which in any case is still very poorly understood,

are reproduced by the holographic approach.

7 Application: limiting violations of the KSS bound

The field theories we have been discussing are remote from QCD, so it came as a surprise

when Kovtun et al. [25] were able to use such methods to make a remarkably accurate

estimate [expressed in terms of the “KSS bound”] for the viscosity/entropy density ratio

η/s of the medium observed at the RHIC. This estimate holds for a wide variety of systems,

provided that one uses the standard two-derivative action for bulk gravity, as we have done

throughout this work. However, in string theory one is interested in allowing for small

corrections to this action, corrections involving higher-order derivatives: see [26] and its

references to earlier work. Unfortunately, the result is that the KSS bound appears to be

violated. These violations are necessarily small, since the computation is itself based on

the assumption that the couplings of the higher-order terms are suppressed by [powers of]

the ratio of the Planck length to the AdS length scale. However, these small violations

are enhanced by the inclusion of a chemical potential [26, 27]. The enhancement can be

substantial if the temperature-normalized chemical potential can be very large; which, in
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fact, is the generic case in the absence of the effect described here. It is true that the value

of µ̄ at the RHIC is small, so that the modification of the KSS result due to the chemical

potential is likewise small there. But a quark plasma with large values of µ is potentially

of physical interest [for example, in the study of the formation of neutron stars], so one

wishes to know whether the KSS bound can fail badly in some region of the quark matter

phase plane.

It is known that issues regarding causality and unitarity arise [54–56] when one goes

beyond the Einstein-Hilbert gravitational lagrangian in the bulk, and it has been ar-

gued [57–59], on these grounds, that η/s cannot be much smaller than the value 1/4π

given by Kovtun et al.. In the context of the specific corrections discussed in [26, 27],

we can see that the effect discussed in this work also limits violations of the KSS bound:

the temperature of the black hole in the AdS bulk cannot go low enough to produce large

values of µ̄ in the dual field theory. Let examine the consequences in detail. [We again

assume throughout that, as Q varies, the field theory remains in the plasma state; that is,

that the black hole does not relax to a soliton.]

Myers et al. [26] show that the KSS ratio is given, if a four-derivative action is used, by

η

s
=

1

4π






1 − 8c1 +

16µ̄2

3
(

1 +
√

1 + 2µ̄2/3
)2

×
(

c1 + 6c2

)






. (7.1)

Here c1 is the dimensionless coupling of the squared curvature term RabcdRabcd, and c2

is the dimensionless coupling of a term of the form RabcdFabFcd, where Fab is the field

strength tensor; we remind the reader that, throughout this work, we have adopted the

same normalization of the chemical potential as in [26]. The addition of such terms to the

action will of course modify our discussion in this work [for example, the precise width of

the range of sub-extremal charges for which the black hole is unstable will change slightly,

in a way that depends on these and other couplings], but, since all of these couplings must

be extremely small, it is consistent to ignore this in a perturbative analysis.

Myers et al. give explicit examples of specific theories in which both correction terms

in (7.1) are negative, so the KSS bound is violated here, and, since the function of µ̄

in the second correction term is an increasing function, large values of the normalized

chemical potential do indeed make the situation significantly worse. In fact, this function

is asymptotic to the value 8 at large values of µ̄. But our bound (5.16) forces it to be very

much smaller: it can in fact be no larger than approximately 0.295249. If we assume that

c1 + 6c2 is negative, then this means that we have a lower bound on the KSS ratio:

η

s
≥ 1

4π

[

1 − 7.704751 c1 + 1.771493 c2

]

. (7.2)

In the case of the ungauged N = 2 supergravity [for which c1 is positive, and c2 = − c1/2],

this simplifies to
η

s
≥ 1

4π

[

1 − 8.590498 c1

]

. (7.3)

Comparing this with equation (7.1) when µ̄ = 0, we see that, even in the most extreme case,

the chemical potential can worsen the violation of the KSS bound only to a small extent.
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To summarize: since c1 and c2 are small, and the effect of the chemical potential

is marginal, we see that the inclusion of higher-derivative corrections in the bulk action

probably does not lead to large violations of the KSS bound. A more precise formulation

of this statement would of course be welcome.

8 Conclusion

Our principal conclusion is very simple: for one reason or another — and the two reasons

are indeed very different — a black hole with a flat event horizon cannot be arbitrarily

cold. Holographically, this means that the same statement holds true of the plasma phase

of the field theory. This may seem obvious, but it is not true classically. Among other

applications, this result implies that there is a surprisingly severe restriction on the range of

possible temperature-normalized chemical potentials, given by (5.16). While the numerical

value we found should not be taken too literally, it is not enormously different from the

value of the baryonic temperature-normalized chemical potential in the fluid-like medium

observed at the RHIC.

The instabilities responsible for all of our results are solely due to subtle properties

of black hole thermodynamics and non-perturbative string theory; no such effects are seen

otherwise [60]. On the other hand, the requirement that the bulk should be free of Seiberg-

Witten instability is undoubtedly just one of many consistency conditions imposed by

string theory; certainly other, completely different forms of string-related instability are

known — see for example [61–63]. In view of our findings here, it seems reasonable to

hope, for example, that a full understanding of the KSS bound will be realised when all of

these effects are taken into account. One should also attempt to understand the various

ways in which still more general black holes, involving other kinds of bulk matter, might

fail to be stable, as for example in [64]. Again, such instabilities might, in the analogous

asymptotically AdS contexts, impose interesting restrictions on a dual field theory defined

on a flat spacetime.

At high values of the chemical potential, our results mean that even very hot black

holes can be unstable. We understand this result on the gravitational side of the duality,

but one would also like to see precisely what happens in the field theory in these circum-

stances: that is, to pinpoint the field theory analogue of brane instability in the bulk. One

understands [23] why there is an instability in the field theory when the scalar curvature

at infinity is negative — the scalar curvature acts like a negative squared mass. But the

situation is less clear when the scalar curvature at infinity is zero; some higher-order effect

is responsible for the instability. An analysis of this point could be very useful.

In the application to the strongly coupled QGP [5], the lower bound on the tempera-

tures of “flat” black holes imposed by requiring stability in the Seiberg-Witten sense has

a natural dual interpretation: there must always be a phase transition, to some “exotic”

state, if one tries to lower the temperature of the QGP at very high chemical potentials.

This is of course precisely how the quark matter phase diagram is usually drawn [12]. The

question now is: can one use the holographic version of the phase diagram to give rough

estimates of the temperatures and chemical potentials at which phase changes are to be
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expected, as future experiments scan across the diagram? This seems very ambitious, but,

once again, the concept of “black hole universality” may help us here.
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Reissner-Nordstróm black hole background in higher dimensions,

Int. J. Mod. Phys. A 23 (2008) 2943 [arXiv:0804.0295] [SPIRES].

[44] G.E.A. Matsas, M. Richartz, A. Saa, A.R.R. da Silva and D.A.T. Vanzella, Can quantum

mechanics fool the cosmic censor?, Phys. Rev. D 79 (2009) 101502 [arXiv:0905.1077]

[SPIRES].

[45] S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math.

Phys. 4 (2000) 679 [hep-th/0002160] [SPIRES].

[46] J.M. Maldacena, Eternal black holes in Anti-de-Sitter, JHEP 04 (2003) 021

[hep-th/0106112] [SPIRES].

[47] J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation,

JHEP 02 (1999) 011 [hep-th/9812073] [SPIRES].

[48] E. Witten and S.-T. Yau, Connectedness of the boundary in the AdS/CFT correspondence,

Adv. Theor. Math. Phys. 3 (1999) 1635 [hep-th/9910245] [SPIRES].

[49] J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053 [hep-th/0401024]

[SPIRES].

[50] M.-l. Cai and G.J. Galloway, Boundaries of zero scalar curvature in the AdS/CFT

correspondence, Adv. Theor. Math. Phys. 3 (1999) 1769 [hep-th/0003046] [SPIRES].

[51] B. McInnes, Quintessential Maldacena-Maoz cosmologies, JHEP 04 (2004) 036

[hep-th/0403104] [SPIRES].

[52] K. Copsey and G.T. Horowitz, Gravity dual of gauge theory on S2 × S1 × R,

JHEP 06 (2006) 021 [hep-th/0602003] [SPIRES].

[53] B. McInnes, Black hole final state conspiracies, Nucl. Phys. B 807 (2009) 33

[arXiv:0806.3818] [SPIRES].

[54] X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Viscosity bound, causality

violation and instability with stringy correction and charge, JHEP 10 (2008) 009

[arXiv:0808.2354] [SPIRES].

– 23 –

http://arxiv.org/abs/hep-th/9803131
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9803131
http://arxiv.org/abs/math/0311476
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=MATH/0311476
http://dx.doi.org/10.1016/S0370-2693(01)00335-5
http://arxiv.org/abs/hep-th/9912119
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9912119
http://dx.doi.org/10.1143/PTP.120.833
http://arxiv.org/abs/0806.4460
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.4460
http://arxiv.org/abs/0901.0278
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.0278
http://dx.doi.org/10.1103/PhysRevLett.100.121101
http://arxiv.org/abs/0805.3873
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.3873
http://dx.doi.org/10.1142/S0217751X08041402
http://arxiv.org/abs/0804.0295
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.0295
http://dx.doi.org/10.1103/PhysRevD.79.101502
http://arxiv.org/abs/0905.1077
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.1077
http://arxiv.org/abs/hep-th/0002160
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0002160
http://dx.doi.org/10.1088/1126-6708/2003/04/021
http://arxiv.org/abs/hep-th/0106112
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0106112
http://dx.doi.org/10.1088/1126-6708/1999/02/011
http://arxiv.org/abs/hep-th/9812073
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9812073
http://arxiv.org/abs/hep-th/9910245
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9910245
http://dx.doi.org/10.1088/1126-6708/2004/02/053
http://arxiv.org/abs/hep-th/0401024
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0401024
http://arxiv.org/abs/hep-th/0003046
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0003046
http://dx.doi.org/10.1088/1126-6708/2004/04/036
http://arxiv.org/abs/hep-th/0403104
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0403104
http://dx.doi.org/10.1088/1126-6708/2006/06/021
http://arxiv.org/abs/hep-th/0602003
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0602003
http://dx.doi.org/10.1016/j.nuclphysb.2008.08.007
http://arxiv.org/abs/0806.3818
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.3818
http://dx.doi.org/10.1088/1126-6708/2008/10/009
http://arxiv.org/abs/0808.2354
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.2354


J
H
E
P
0
9
(
2
0
0
9
)
0
4
8

[55] X.-H. Ge and S.-J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet

coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [SPIRES].

[56] X.-H. Ge, S.-J. Sin, S.-F. Wu and G.-H. Yang, Shear viscosity and instability from third order

Lovelock gravity, arXiv:0905.2675 [SPIRES].

[57] M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality

violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].

[58] I.P. Neupane, Black holes, entropy bound and causality violation,

Int. J. Mod. Phys. A 24 (2009) 3584 [arXiv:0904.4805] [SPIRES].

[59] A. Sinha and R.C. Myers, The viscosity bound in string theory, arXiv:0907.4798 [SPIRES].

[60] R.A. Konoplya and A. Zhidenko, Stability of higher dimensional

Reissner-Nordstrom-anti-de Sitter black holes, Phys. Rev. D 78 (2008) 104017

[arXiv:0809.2048] [SPIRES].

[61] S.S. Gubser and I. Mitra, Instability of charged black holes in anti-de Sitter space,

hep-th/0009126 [SPIRES].

[62] D. Yamada, Fragmentation of spinning branes, Class. Quant. Grav. 25 (2008) 145006

[arXiv:0802.3508] [SPIRES].

[63] G.T. Horowitz, J. Orgera and J. Polchinski, Nonperturbative instability of AdS5 × S5/Zk,

Phys. Rev. D 77 (2008) 024004 [arXiv:0709.4262] [SPIRES].

[64] S. Nojiri and S.D. Odintsov, Singularity of spherically-symmetric spacetime in

quintessence/phantom dark energy universe, arXiv:0903.5231 [SPIRES].

– 24 –

http://dx.doi.org/10.1088/1126-6708/2009/05/051
http://arxiv.org/abs/0903.2527
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.2527
http://arxiv.org/abs/0905.2675
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.2675
http://dx.doi.org/10.1103/PhysRevLett.100.191601
http://arxiv.org/abs/0802.3318
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.3318
http://dx.doi.org/10.1142/S0217751X09047235
http://arxiv.org/abs/0904.4805
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.4805
http://arxiv.org/abs/0907.4798
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.4798
http://dx.doi.org/10.1103/PhysRevD.78.104017
http://arxiv.org/abs/0809.2048
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.2048
http://arxiv.org/abs/hep-th/0009126
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0009126
http://dx.doi.org/10.1088/0264-9381/25/14/145006
http://arxiv.org/abs/0802.3508
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.3508
http://dx.doi.org/10.1103/PhysRevD.77.024004
http://arxiv.org/abs/0709.4262
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.4262
http://arxiv.org/abs/0903.5231
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.5231

	Can a black hole be arbitrarily cold?
	Physics of ``flat" black holes
	No zero temperatures at low mu: transition to confinement
	No zero temperatures at high mu: stringy instabilities
	The bounds on temperature and normalized chemical potential
	Application: the field theory phase plane
	Application: limiting violations of the KSS bound
	Conclusion

